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Abstract 
 

Machine learning is widely used in various academic fields, and recently it has been actively 
applied in the medical research. In the medical field, machine learning is used in a variety of 
ways, such as speeding up diagnosis, discovering new biomarkers, or discovering latent traits 
of a disease. In the respiratory field, a relative regional air volume change (RRAVC) map 
based on quantitative inspiratory and expiratory computed tomography (CT) imaging can be 
used as a useful functional imaging biomarker for characterizing regional ventilation. In this 
study, we seek to predict RRAVC using various regular machine learning models such as 
extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and 
multi-layer perceptron (MLP). We experimentally show that MLP performs best, followed by 
XGBoost. We also propose several relative coordinate systems to minimize intersubjective 
variability. We confirm a significant experimental performance improvement when we apply 
a subject's relative proportion coordinates over conventional absolute coordinates. 
 
Keywords: Biomedical machine learning, chronic obstructive pulmonary disease, deep 
learning, quantitative CT imaging, relative regional air volume change. 
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1. Introduction 

Machine learning and deep learning are used in many areas of modern human daily life [1]. 
It is used in various fields such as image recognition [2, 3], natural language processing [4–6], 
and anomaly detection [7, 8]. These areas have been significantly improved by using machine 
learning and deep learning techniques. Image recognition is used for security purposes, such 
as facial recognition, and is used for object detection, which is one of the key elements of 
autonomous driving. In the field of natural language processing, it is used for automatic 
translations, automatic response functions, and chatter robots (ChatBots). Anomaly detection 
can be used for network intrusion detection or abnormal credit card transaction detection. 
Machine learning is also used when Netflix recommends movies that you might potentially 
like. In these ways, machine learning and deep learning are common in our daily lives. 

Integration of machine learning and deep learning in the field of medicine is also becoming 
more and more popular [9, 10]. Since medical data are in different formats such as reports, 
discharge summaries, images, and audio, the most appropriate model varies according to the 
applied fields and purposes. Models learned from medical data can be used to increase the 
accuracy of diagnosis or serve as an auxiliary aid to patient care. 

Machine learning has been widely used in respiratory medicine, for example, for early 
prediction of childhood asthma, early prediction of asthma exacerbations, and characterization 
of asthma and chronic obstructive pulmonary disease (COPD) phenotypes [11–15].  COPD is 
the third leading cause of death and is expected to become the first leading cause of death [16, 
17]. Pulmonary function test (PFT) results, such as forced expiratory volume in the first second 
(FEV1) and forced vital capacity (FVC), are used to determine the stages of COPD [18]. 
However, since the PFT reflects only the whole lung function, and not regional lung decline 
of functional features before the destruction of lung tissue [19, 20], early detection or self-
recognition is difficult until the whole lung function is severely declined. Detection and 
management of early COPD have recently received a lot of attention [21]. Machine learning 
approaches with imaging have been capable of characterizing early stage progression of COPD 
[20]. Furthermore, machine learning has been widely used to investigate various aspects of 
COVID-19 [22–24]. Machine learning is intensively used for the early diagnosis of lung 
diseases, which is very important in treatment efficacy [14, 25, 26]. 

Recently, apart from machine learning, CT scans have been used to quantitatively 
characterize imaging-based regional lung function in lung diseases [27–33]. Chae et al. [33] 
introduced a standardized measure of CT-based local ventilatory capacity named relative 
regional air volume change (RRAVC) to differentiate COPD patients from normal subjects. 
They found that RRAVC can be an effective imaging biomarker for regional lung ventilation 
that shows how much air goes in and out of each lung region from CT scans, and that we can 
find how much air flow is limited as lung disease progresses. RRAVC also characterizes the 
effects of supine versus prone body positions in regional lung ventilation distribution of 
normal lungs [31]. 

From inspiratory and expiratory CT images of a human subject, segmentation and image 
registration are first conducted. Then, RRAVC values are calculated at local lung regions by 
mathematical definition. The authors show how the distribution of RRAVC differs between 
COPD patients and normal subjects [33]. However, the degrees of abnormality in RRAVC 
values in individual local lung regions are not evaluated solely using the defined calculation, 
because RRAVC is not uniform, even in normal lungs, and there is no reference value for each 
region. In this paper, we seek to predict RRAVC values at small-scale local lung regions using 
various machine learning modeling approaches.  
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There are three key contributions in this research. 1) This study is the first attempt to predict 
normal subjects’ RRAVC values using machine learning and deep learning without direct 
calculation by its definition. We provide a machine learning baseline model as the first step to 
measure the degrees of functional abnormality in local lung regions from quantitative CT 
models. 2) The x, y, and z coordinates of the lung are entered into the RRAVC calculation at 
local lung regions. Since each patient's height and body type are all different, the x, y, z 
coordinate values of each patient's lungs are standardized to reflect this. We try to maximize 
the performance of machine learning models by introducing a total of three relative coordinate 
systems. 3) We explore the optimal number of layers for multi-layer perceptron (MLP), which 
is one of the deep learning models. In addition, we experimentally show that this optimized 
MLP model performs better than existing regression models. 

2. Related Work 
RRAVC is defined as the ratio between normalized local air volume change and normalized 

entire lung air volume change. Fig. 1 illustrates the process of how RRAVC values are created 
[33]. 

 

 
 

Fig. 1. A schematic of the process from segmentation of inspiration and expiration CTs to CT image 
matching by image registration to the final color-coded 3D RRAVC map. 

 
We use two CT images acquired from a patient: one at full inspiration and the other at full 

expiration. From those CT images, an image processing called “segmentation” identifies 
separate regions of airways, lungs, lobes, and blood vessels using VIDA Vision software 
(Coralville, IA, USA). A human lung has five lobes, as you see in five different colors in the 
segmentation part of Fig. 1. This software is a tool to analyze airway and segment lung CT 
images. After segmentation, a process called image registration matches the anatomically 
same lung regions from the two CT images and maps the expiratory CT image onto the 
inspiratory CT image in the same coordinate system. This means that we cannot only compare 
local lung regions from the two images but also compute various variables, such as air 
ventilation. We compute relative regional air volume change, i.e. RRAVC, at small lung units 
as shown here, to quantitatively characterize the three-dimensional map of regional air 
ventilation distribution characteristics. RRAVC is calculated as follows. 

 

RRAVC =   
� 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎

𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎
𝑒𝑒𝑒𝑒𝑖𝑖�/𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇

(𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎

𝑒𝑒𝑒𝑒𝑖𝑖)/𝑇𝑇𝑇𝑇𝑇𝑇
                                            (1) 
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Fig. 2 shows how the generated RRAVC values differ between about three-thousand 
regions of normal lungs and COPD lungs [33]. The left image shows the normal lung of a 53-
year-old man. More ventilation happens in the red regions than blue region. Ventilation in the 
healthy lung increases toward the bottom and back of the lung. The right image is from a 60-
year-old COPD patient who showed significant heterogeneous ventilation. 
 

 
Fig. 2. Representative images of 3D RRAVC maps of (a) a 53-year-old normal subject, and 

 (b) a 60-year-old man with emphysema. 
 
In the case of a normal subject, the RRAVC values gradually change from near zero to 1.5 

over the lung regions. However, in a COPD patient, more extreme RRAVC values are 
predominant. And from the side view, the RRAVC values do not change smoothly. We can 
clearly see the difference in the distribution of RRAVC values between normal and COPD 
patients. Therefore, interpretation of the RRAVC distribution is considered a very useful 
imaging biomarker for understanding regional decline of air ventilatory function in COPD and 
other diseased lungs. We expect a machine learning-based prediction of RRAVC values will 
help better understand lung ventilation decline in COPD. 

3. Machine Learning Models  
Recently, various machine learning techniques for pulmonary nodule automatic detection 

have been applied in the respiratory field [36, 37]. Similarly, we would like to use machine 
learning techniques to predict RRAVC. 

Our predictive target variable, RRAVC, is a continuous value. The regression algorithm 
that predicts these continuous variable values has been actively researched before the recent 
popularity of machine learning. The simplest multivariate linear regression among various 
linear regression models is noted in (2). 

 

argmin
𝛼𝛼∈𝑅𝑅, 𝛽𝛽∈𝑅𝑅𝑝𝑝

��𝑦𝑦𝑎𝑎 − 𝛼𝛼 −�𝛽𝛽𝑗𝑗𝑥𝑥𝑎𝑎𝑗𝑗

𝑖𝑖

𝑗𝑗=1

�

2𝑁𝑁

𝑎𝑎=1

                                              (2) 

 
There are more advanced linear regression models, for example, the ridge regression model 

and the LASSO regression model. These two are very famous regularization techniques. They 
reduce the weight of independent variables with low explanatory power by limiting the size of 
the regression coefficients when calculating the regression coefficients. Ridge regression is 
the addition of L2-norm regularization and LASSO is the addition of L1-norm regularization. 
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Ridge regression can be expressed as (3) as shown below, and LASSO regression is expressed 
as (4). 

argmin
𝛼𝛼∈𝑅𝑅, 𝛽𝛽∈𝑅𝑅𝑝𝑝

��𝑦𝑦𝑎𝑎 − 𝛼𝛼 −�𝛽𝛽𝑗𝑗𝑥𝑥𝑎𝑎𝑗𝑗

𝑖𝑖

𝑗𝑗=1

�

2

+ 𝜆𝜆��𝛽𝛽𝑗𝑗�
𝑖𝑖

𝑗𝑗=1

2

  
𝑁𝑁

𝑎𝑎=1

                         (3) 

 

argmin
𝛼𝛼∈𝑅𝑅, 𝛽𝛽∈𝑅𝑅𝑝𝑝

��𝑦𝑦𝑎𝑎 − 𝛼𝛼 −�𝛽𝛽𝑗𝑗𝑥𝑥𝑎𝑎𝑗𝑗

𝑖𝑖
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2

+ 𝜆𝜆��𝛽𝛽𝑗𝑗�
𝑖𝑖
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𝑁𝑁

𝑎𝑎=1

                            (4) 

 
ElasticNet is a combination of ridge regression and LASSO regression, and it is a technique 

that includes both the L1 norm and the L2 norm [38]. 
 

argmin
𝛼𝛼∈𝑅𝑅, 𝛽𝛽∈𝑅𝑅𝑝𝑝

��𝑦𝑦𝑎𝑎 − 𝛼𝛼 −�𝛽𝛽𝑗𝑗𝑥𝑥𝑎𝑎𝑗𝑗

𝑖𝑖

𝑗𝑗=1

�

2

+ 𝜆𝜆1��𝛽𝛽𝑗𝑗�1

𝑖𝑖

𝑗𝑗=1

+ 𝜆𝜆2��𝛽𝛽𝑗𝑗�2
2

𝑖𝑖

𝑗𝑗=1

𝑁𝑁

𝑎𝑎=1

                (5) 

 
Support vector regression is a method that learns to fit as much data as possible within the 

margin (tube). We used both linear and non-linear kernel functions [39]. We also used two 
famous ensemble techniques. Extreme gradient boosting (XGBoost) [40] and light gradient 
boosting machine (LightGBM) [41] are ensemble models that use multiple decision trees. 
These two are known for their good performance in various fields. XGBoost has level-wise 
tree growth whereas LightGBM has leaf-wise tree growth.  

MLP is an artificial neural network in which perceptrons are stacked using two or more 
hidden layers. We use the Adam optimizer as the MLP setting in this paper and the dropout 
probability is 0.2. Rectified linear unit (ReLU) is used as our nonlinear activation function. In 
addition to the input layer and output layer, 3 hidden layers are used and the structure 
information of the number of nodes per layer is as follows. The input layer is 46 or 52 
depending on which coordinate is used. Experiments with more diverse MLP structures are 
conducted in section 5.3. 
 

Table 1.  MLP Architecture for RRAVC Prediction 
Layers # of nodes 

Input layer 46 or 52 
Hidden layer 1 30 
Hidden layer 2 20 
Hidden layer 3 10 
Output layer 1 

 
In MLP, a decision of the number of layers (i.e., how many hidden layers to stack) is a 

very important process of hyper-parameter tuning. Therefore, several experiments are 
conducted to find the optimal model while changing the number of these layers. Of course, as 
the number of hidden layer changes, the number of nodes in each hidden layer also changes. 

After segmentation and image registration from the CT images, we obtain features for each 
data point of the lung. At this time, the x, y, and z coordinates of each lung were also obtained. 
These are absolute coordinates. However, these absolute coordinates may not reflect the 
patient's characteristics properly. Because humans have different height sizes and different 
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chest thicknesses, the x, y, and z coordinate values are different even if the specific data point 
is exactly the center coordinates of each human. To solve this problem, we try to maximize 
the performance of our model by introducing the following three relative coordinate systems: 
1) relative coordinates, 2) relative proportional coordinates, and 3) potential relative 
coordinates. 

4. Relative Coordinates for Standardization  

4.1 Relative Coordinates 
Relative coordinates indicate how far each data point coordinate is from the minimum 

position. The formula is as follows. 
 

� 𝑥𝑥𝑎𝑎𝑖𝑖𝑐𝑐𝑖𝑖 ,𝑦𝑦𝑎𝑎𝑖𝑖𝑐𝑐𝑖𝑖 , 𝑧𝑧𝑎𝑎𝑖𝑖𝑐𝑐𝑖𝑖� = ( 𝑥𝑥𝑎𝑎 − min(𝑥𝑥) ,𝑦𝑦𝑎𝑎 − min(𝑦𝑦) , 𝑧𝑧𝑎𝑎 − min(𝑧𝑧) )       (6) 
 
For example, suppose a simple lung modeling of a subject S1 is represented in two-

dimensional coordinates. In this case, we have x and y coordinates. Let us assume that the 
lower-left data point (the data point with the smallest x and y coordinates) is (5, 10) and the 
upper-right data point (the data point with the largest both the x and y coordinates) is (95, 100). 
In this case, min(x) = 5, min(y) = 10, max(x) = 95, max(y) = 100. Assume we have a data 
point A (50, 55) above that lung. In this case, the absolute coordinate of point A is (50, 55), 
but the relative coordinates are (50-5, 55-10) = (45, 45). The absolute coordinate for data point 
A is not above the y=x line. However, it is above the y=x line for the relative coordinates 
system. 

4.2 Relative Proportional Coordinates 
This indicates how far each coordinate is between the minimum and maximum values. In 

the S1 subject example above, the relative coordinates value of point A is (45, 45). And the 
top right (95, 100) is also converted to (95-5, 100-10) = (90, 90) in the relative coordinates. 
Therefore, it can be seen that point A is located in the center of the lung modeling of that 
subject. 

Suppose there is another subject S2, and S2 is taller than S1. This means that coordinates 
values of the upper-right data point of S2 is larger than that of the previous subject S1. Let's 
assume that the lower-left corner and point A are kept as S1 example, and only the coordinates 
of the upper-right corner are changed to (125, 130). In this case, the relative coordinates of S2 
are (45, 45), which is the same as that of S1. However, we cannot see that point A is located 
in the center of the lungs of S2 like S1. If we transform the upper-right coordinate of S2 to 
relative coordinates, (125-5, 130-10) = (120, 120). Therefore, point A of the S2 subject is only 
located about 1/3 of the lower left corner of the overall coordinate system. To solve this 
problem, we propose a relative proportional coordinates that normalizes each relative 
coordinate as follows. 

 
�𝑥𝑥𝑎𝑎𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 ,𝑦𝑦𝑎𝑎𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 , 𝑧𝑧𝑎𝑎𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖� = � 𝑒𝑒𝑖𝑖−min(𝑒𝑒)

max(𝑒𝑒)−min(𝑒𝑒) , 𝑦𝑦𝑖𝑖−min(𝑦𝑦)
max(𝑦𝑦)−min(𝑦𝑦) , 𝑧𝑧𝑖𝑖−min(𝑧𝑧)

max(𝑧𝑧)−min(𝑧𝑧) �       (7)      
 
Using the above relative proportional coordinates, point A in S1 is transformed to 

� 50−5
95−5

 , 55−10
100−10

 � = ( 0.5, 0.5 )  and point A in S2 to � 50−5
125−5

 , 55−10
130−10

 � = ( 0.375, 0.375 )  
respectively. We can see that the problem mentioned above is solved. 
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4.3 Potential Relative Coordinates 
This method does not compute the relative coordinates, relative proportion coordinates, or 

other new features of each data point. However, we add the max and min values of each 
coordinate of the subject as new features to every data point. The max and min values of 
coordinates are different for each subject. Therefore, we experiment to see if these new feature 
columns can potentially represent relative coordinates. 

5. Experimental Results 

5.1 Dataset and Computing Resources 

The data set was approved by the institutional review board of Jeonbuk National University 
Hospital, and informed consent was received for the expiratory CT scan in the original study. 
We use full inspiratory CT and full expiratory CT images. The data set was generated from 
292 subjects, and each subject has about 60,100 data points (rows). Each row represents a data 
point of an acinar scale local lung region (a sphere in Fig. 1). We used only 8,772,704 data 
points, which have nonzero RRAVC values among all 17,543,764 overall data points. 

Each row consists of 37 columns, including the x, y, and z coordinates of its data point, 
changes in x, y, and z coordinates of each data point, length, diameter, lobe region, air volume, 
tissue volume, Horsfield ordering, determinant of Jacobian matrix (J), anisotropic deformation 
index (ADI), slab-rob index (SRI), reference index of bronchi, displacement, normalized 
displacement, and angle. Of the 292 people total, we use 80% as training data and 20% as test 
data. As the performance metrics, we utilize the R2 score, mean squared error (MSE), and 
mean absolute error (MAE). The experiments were conducted using Nvidia Quadro RTX 5000 
GPU, Intel Xeon Gold 5220R CPU, and 187 GB of RAM. 

5.2 Performance Result  

5.2.1 RRAVC Prediction Using Machine Learning  
We experiment with a total of 5 scaling changes (i.e., non-scaling, standard, robust, 

minmax, maxabs) for the robustness of determining which model performs best. Since each 
scaling has different characteristics, this is to compare more general performance. Based on 
these experiments we can find the best performing model, which can be a baseline model for 
future indicators of performance evaluation. Grid experiments are conducted on a total of 40 
settings (5 scaling changes and 8 models mentioned in section 3). The 4 scaling formulas 
excluding non-scaling are as follows. 

 
𝑥𝑥𝑖𝑖𝑠𝑠𝑎𝑎𝑖𝑖𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠 =

𝑥𝑥 − 𝜇𝜇
𝜎𝜎

                                                             (8) 
 

𝑥𝑥𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑠𝑠 =
𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑒𝑒𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖

𝑥𝑥𝑄𝑄3 − 𝑥𝑥𝑄𝑄1
                                                    (9) 

 
𝑥𝑥𝑚𝑚𝑎𝑎𝑖𝑖𝑚𝑚𝑎𝑎𝑒𝑒 =

𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑎𝑎𝑖𝑖

𝑥𝑥𝑚𝑚𝑎𝑎𝑒𝑒 − 𝑥𝑥𝑚𝑚𝑎𝑎𝑖𝑖
                                               (10) 

 
𝑥𝑥𝑚𝑚𝑎𝑎𝑒𝑒𝑎𝑎𝑟𝑟𝑖𝑖 =

𝑥𝑥
|𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥)|                                                   (11) 
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Table 2 shows the results of comparing the R2 scores of each model for different scaling 
techniques. MSE of all models are shown in Table 3. MAE of all models are listed in the 
Table 4. Deep learning MLP models are additionally tested in section 5.2.3 so they are not 
included in Table 2. Among the above 8 models, the trained linear support vector regressor 
model does not converge. Therefore, it is excluded from the experimental results of this paper. 
Nonlinear support vector regressor takes more than 24 hours to train, which is not considered 
as realistic. Nonlinear support vector regressor is also not included in the experimental results. 

 
Table 2.  R2 scores of RRAVC prediction 

 none standard minmax robust maxabs 
Linear 0.0622803 0.0622803 0.0622803 0.0622803 0.0622803 
Ridge 0.0622806 0.0622808 0.0623275 0.0622812 0.0623058 

LASSO 0.0298870 0.0003844 -0.0002219 0.0004708 -0.0002219 
ElasticNet 0.0431111 0.0004880 -0.0002219 0.0003826 -0.0002219 
XGBoost 0.3683279 0.3775327 0.3207365 0.3608702 0.3369287 
LGBM 0.2975713 0.3328849 0.3100740 0.3340164 0.2975726 

 
Table 3.  Mean squared error of RRAVC prediction 

 none standard minmax robust maxabs 
Linear 1.0818174 1.1550367 0.0001345 6.5694631 0.0003202 
Ridge 1.0818170 1.1550361 0.0001345 6.5694563 0.0003202 

LASSO 1.1191885 1.2312770 0.0001434 7.0024867 0.0003415 
ElasticNet 1.1039323 1.2311495 0.0001434 7.0031050 0.0003415 
XGBoost 0.7287400 0.7667244 0.0000974 4.4776060 0.0002264 
LGBM 0.8103700 0.8217194 0.0000989 4.6657379 0.0002398 

 
Table 4.  Mean absolute error of RRAVC prediction 

 none standard minmax robust maxabs 
Linear 0.329931465 0.340913857 0.0036784 0.81303959 0.00567611 
Ridge 0.329931405 0.340913626 0.00367823 0.81303862 0.00567592 

LASSO 0.309842234 0.346390702 0.00373153 0.82971405 0.0057581 
ElasticNet 0.307328835 0.347636997 0.00373153 0.83158253 0.0057581 
XGBoost 0.230503337 0.235101718 0.00270653 0.572267 0.0041632 
LGBM 0.253868842 0.25894121 0.00285972 0.62120382 0.00436755 

 
The above tables show that XGBoost has the best performance for all scaling. When we 

look at the parameters of the trained XGBoost model to predict RRAVC, we found that J, a 
local volume expansion ratio, plays the most important role among 37 columns. This may 
reflect that J as a geometrical deformation index is important for accurate prediction of air 
ventilation distribution, even though J is not explicitly used in the formula for calculating 
RRAVC. J was also used in a deep learning patten cluster-based detection of regional lung 
features in a COPD population [26]. 

5.2.2 Effect of Relative Coordinates for Standardization 
Fig. 3 shows the experimental results of comparing the absolute coordinate and three types 

of relative coordinates proposed in this paper for XGBoost. Similarly, the experimental results 
for LightGBM and MLP are shown in Fig. 4 and Fig. 5, respectively. 

In all cases of XGBoost, LightGBM, and MLP, the relative proportional coordinates record 
the highest adjusted r2 score. This coordinate system shows better performance than the 
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conventional absolute coordinate. XGBoost, LightGBM, and MLP also show the lowest MSE 
when we use relative proportional coordinates among a total of four coordinates. The relative 
coordinate of XGBoost and LightGBM show similar or slightly worse performance to the 
conventional absolute coordinate. From this result, we can deduce that 'in what proportion 
between the min and max' is more important than 'how far from the min'. 
 

 
Fig. 3.  XGBoost performance according to different coordinates; 

MSE (left) and adjusted R2 score (right). 
 
 

 
Fig. 4.  LightGBM performance according to different coordinates; 

MSE (left) and adjusted R2 score (right). 
 

In XGBoost and LightGBM, relative coordinates perform worse than absolute coordinates. 
However, for MLP, other interesting results are obtained. In MLP the relative proportional 
coordinates show the best performance but the relative coordinates show the second best 
performance. And the performance gap is not that big. This is probably the effect of deep-
stacking the neural network. MLP also defeats other regression algorithms, as well as 
XGBoost and LightGBM. MLP with absolute coordinate performs even better than XGBoost 
or LightGBM with relative proportional coordinates. Therefore, we can say that MLP has the 
best performance among the various machine learning models we experiment with. 
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In case of potential relative coordinates, the performance is not good in all 3 models of 
XGBoost, LightGBM, and MLP. MSE increases and the adjusted R2 score decreases 
compared to the absolute coordinates. From this, we can see that the method of adding the max 
and min values of each coordinate as a feature is inefficient. 

We conclude that among the conventional absolute coordinates and the three relative 
coordinates, the relative proportional coordinates show the best performance. Therefore, in the 
next subsection, when experimenting with MLPs of various structures, we use the relative 
proportional coordinates to find the best performing model. 

 

 
Fig. 5.  MLP performance according to different coordinates; 

MSE (left) and adjusted R2 score (right). 
 

5.2.3 Performance Evaluation According to the Number of MLP Layers 
MLP has relatively many hyper-parameters compared to other machine learning algorithms. 

For example, dropout probability, learning rate, optimizer, number of hidden layers, number 
of nodes in each hidden layer, and number of epochs. In this paper, to find the optimal MLP 
model, we experiment by changing the number of hidden layers and the number of nodes in 
each hidden layer. The number of hidden layers is changed from 1 to 6 and the number of 
nodes in each hidden layer is set arbitrarily according to the number of hidden layers. For the 
reproducibility of the experimental results, the number of nodes in each layer is listed in Table 
5. We set dropout probability=0.2, learning rate=10−4, Adam optimizer, and epoch=10. The 
number of input layers is 46, and our prediction is regression, so the number of output layers 
is 1. 
 

Table 5.  Various MLP architectures 
Number of hidden layers Nodes in each layers 

1 { 46,  23, 1 } 
2  { 46, 23, 12, 1 } 
3 { 46, 30, 20, 10, 1 } 
4 { 46,  32, 20, 13, 6, 1 } 
5  { 46,  36, 26, 18, 10, 4, 1 } 
6 { 46, 32, 20, 14, 10, 7, 4, 1 } 
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Fig. 6.  MLP performance according to different number of hidden layers; 

MSE (left) and adjusted R2 score (right). 
 

Fig. 6 shows the MSE and R2 scores for the evaluation. It shows the best performance 
when the number of hidden layers is 4; the MSE is lowest and the R2 score is highest. 2 and 3 
hidden layers follow in performance. As the number of hidden layers increases, the MSE 
increases again. Therefore, we think it is good to use MLP models with 2-4 hidden layers for 
RRAVC prediction. 

6. Conclusion 
In this paper, we predict RRAVC, a quantitative CT imaging biomarker useful for 

distinguishing COPD patients from normal subjects, using machine learning rather than a 
defined formula. Among the various regression models, XGBoost shows the largest r2 score 
and the smallest MAE and MSE. We have proposed three relative coordinate methodologies 
and experimentally confirmed a better performance than conventional naive coordinates. In 
particular, among the three coordinates, relative proportional coordinates, which reflect the 
relative position of each point in the subject’s lung, show the best performance. We also try to 
predict RRAVC using MLP, which is one of the basic deep learning models. We find the best 
MLP model architecture for RRAVC prediction by varying the number of MLP layers and 
structure of MLP models and show their improved performance compared to conventional 
machine learning models. The XGBoost or MLP model tested in this paper can be used as a 
baseline model for RRAVC prediction using ML in the future. 

For future research, we are planning to apply more sophisticated machine learning models 
and deep learning models to predict other functional variables, such as J and functional small 
airway disease (fSAD). The lung bronchi can also be viewed as a graph structure, so we will 
try to apply several graph neural networks. Also, in this study, we used data extracted from 
two images: inspiratory and expiratory CT images. However, we will also try to predict the 
RRAVC using either an inspiratory or expiratory CT image only for efficiency. 
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